On the Influence of the Parkinson Disease in Vowel Production

Sara Candeias¹, Jorge Proença¹, Arlindo Veiga^{1,2}, Fernando Perdigão^{1,2} ¹Instituto de Telecomunicações, Pole of Coimbra, Portugal

² Instituto de Telecomunicações, Pole of Coimbra, Portugal ² University of Coimbra – DEEC-FCTUC, Coimbra, Portugal {saracandeias, jproenca, aveiga, fp}@co.it.pt

339

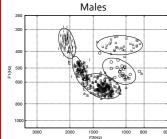
Motivation

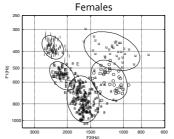
- Parkinson's disease (PD): a neurodegenerative condition with musclerelated symptoms: bradykinesia, tremor, rigidity, progressive dysarthria (difficulty with articulation).
- Ability to handle common technological devices is reduced.
 - Speech technologies may provide important alternatives.
 - Dysarthric speech needs to be taken into account.

Objective -

- To identify the acoustic-phonetic characteristics that distinguish Parkinsonian speech from normal speech, in European Portuguese.
 - To explore the first and second formant frequencies of vowels in continuous speech.
- To build a speech recognizer adapted to PD patients (long term objective).

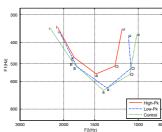
Corpus and Methodology -

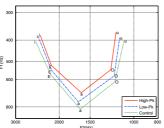

- Corpus collected with PD Patients (50–80 years old). Recordings at the neurology service of the Hospital of the University of Coimbra.
- Similar speech productions recorded with healthy individuals as a form of control.


PD-Sentences 90 minutes – 1002 phonetically rich sentences 22 subjects – 10 male 12 female Control-Sentences same sentences and commands 7 subjects – 4 male 3 female

- 1233 285 167 666 IE1 783 532 188 192 148 98 [a] 1941 160 108 24 36 26 [0] 376
- Two levels of dysarthria discerned through perceptual classification: **Low-PD** and **High-PD**.
- Automatic phone segmentation through forced alignment.
- Difficulty to calculate formant frequency of every vowel in continuous speech.
 - Only stressed position vowels with a duration above 50 ms were selected; low energy parts of the segments were cut.
- Praat tool used to calculate F1 and F2 formant frequencies, with an iterative process with different formant ceilings, choosing the one providing lowest variance.

Formant analysis


 Vowels [i], [E], [a], [O] and [u]: F1 and F2 values show large variations but little overlap.



F2 and F1 for vowels [i], [E], [a], [O] and [u] of Males of the Low-PD group (left) and Females of the Low-PD group (right).

 [u]: often displaced to a centralized position, not given enough time or emphasis to reach a very low F2 value. All of the vowels may partially suffer from this centralization during continuous speech.

F2 and F1 median values of [i], [E], [a], [O] and [u] for males (left) and females (right) in Control, Low-PD and High-PD groups.

- As the dysarthria progresses the triangle of the vowels reduces.
- Lower F1 values for PD, mainly for vowels [a] and [O], and with a slight centralization of F2 values.

Formant metrics

Common indicators of dysarthric speech using F_1 and F_2 of [i], [a] and [u]:

- Vowel Space Area (VSA) $\frac{\left|F_{i}i\times(F_{2}a-F_{2}u)+F_{i}a\times(F_{2}u-F_{2}i)+F_{i}u\times(F_{2}i-F_{2}a)\right|}{\left|F_{i}i\times(F_{2}a-F_{2}u)+F_{i}a\times(F_{2}u-F_{2}i)+F_{i}u\times(F_{2}i-F_{2}a)\right|}$
- Vowel Articulation Index (VAI)* $\frac{F_2I + F_1a}{F_1I + F_1u + F_2u + F_2a}$

Means and standard deviations of formant metrics for the three groups considered

Control	Low-PD	High-PD
1.84 ± 0.73	1.33 ± 0.31	1.02 ± 0.42
0.92 ± 0.07	0.85 ± 0.06	0.80 ± 0.07
2.95 ± 0.31	2.32 ± 0.49	2.26 ± 0.62
0.95 ± 0.05	0.88 ± 0.02	0.89 ± 0.03
	1.84 ± 0.73 0.92 ± 0.07 2.95 ± 0.31	$\begin{array}{ccc} 1.84 \pm 0.73 & 1.33 \pm 0.31 \\ 0.92 \pm 0.07 & 0.85 \pm 0.06 \\ \\ 2.95 \pm 0.31 & 2.32 \pm 0.49 \end{array}$

Smaller area and lower articulation for PD as expected.

However, only statistical significance on Male VAI for Control vs. High-PD with $p\!=\!0.038$

* Another metric is the Formant Centralization Ratio (FCR), which is the inverse value of VAI.

Conclusions

- F1 and F2 formant frequency changes in PD speech show centralization and closeness of vowel articulation.
 - Confirming the difficulty of PD patients with the movement of the tongue's body.
 - Specially evident in open central vowel [a] for both male and female speakers.
- ${\sf -}$ Large speaker variability: articulation of Control vs. High-PD group the only significant result from the usual metrics to evaluate dysarthria.
- PD speech is less dynamic. Confirmed by ranking several acoustic-prosodic features.

